## 2001 Paper 4 Question 1

## Continuous Mathematics

The complex form of the Fourier series is:

$$
f(x)=\sum_{k=-\infty}^{+\infty} c_{k} e^{i 2 \pi k x}
$$

where $c_{k}$ is a complex number and $c_{k}=c_{-k}^{*}$.
(a) Prove that the complex coefficient, $c_{k}$, encodes the amplitude and phase coefficients, $A_{k}$ and $\phi_{k}$, in the alternative form:

$$
f(x)=\sum_{k=0}^{+\infty} A_{k} \cos \left(2 \pi k x-\phi_{k}\right)
$$

(b) What is special about the case $k=0$ ?
(c) Explain how the coefficients, $c_{k}$, of the Fourier series of the periodic function, $f(x)$ :

$$
f(x)=f(x+T), \forall x
$$

can be obtained from the Fourier transform, $F_{L}(\nu)$, of the related function, $f_{L}(x)$ :

$$
f_{L}(x)=\left\{\begin{array}{cc}
f(x), & -\frac{T}{2} \leqslant x<\frac{T}{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

