2001 Paper 2 Question 7

Regular Languages and Finite Automata

- (a) Suppose that L is a language over a finite alphabet Σ with the property that for each number $\ell \ge 1$ there is some string w in L with $length(w) \ge \ell$ such that no matter how w is split up into three pieces $w = u_1 v u_2$ with $length(u_1 v) \le \ell$ and $length(v) \ge 1$, there is some $n \ge 0$ for which $u_1 v^n u_2$ is not in L. Prove that L cannot be a regular language. [12 marks]
- (b) State, with justification, whether each of the following languages over $\Sigma = \{a, b\}$ is regular.
 - (i) $L_1 = \{ww \mid w \in \Sigma^*\}.$ [5 marks]
 - (*ii*) $L_2 = \{wvw \mid v, w \in \Sigma^*\}.$ [3 marks]