2001 Paper 2 Question 7

Regular Languages and Finite Automata

(a) Suppose that L is a language over a finite alphabet Σ with the property that for each number $\ell \geqslant 1$ there is some string w in L with length $(w) \geqslant \ell$ such that no matter how w is split up into three pieces $w=u_{1} v u_{2}$ with length $\left(u_{1} v\right) \leqslant \ell$ and length $(v) \geqslant 1$, there is some $n \geqslant 0$ for which $u_{1} v^{n} u_{2}$ is not in L. Prove that L cannot be a regular language.
(b) State, with justification, whether each of the following languages over $\Sigma=\{a, b\}$ is regular.
(i) $L_{1}=\left\{w w \mid w \in \Sigma^{*}\right\}$.
(ii) $L_{2}=\left\{w v w \mid v, w \in \Sigma^{*}\right\}$.

