2001 Paper 2 Question 4

Probability

(a) Solve the following inhomogeneous difference equation:

$$
u_{n}=2\left(u_{n-1}+3\right) \quad \text { given that } \quad u_{1}=0
$$

It may be assumed that $n \geqslant 1$.

A hardware device generates streams of ternary digits. Within a stream, each digit is equiprobably 0,1 or 2 . A stream ends as soon as each digit has been seen at least once. A stream may be as short as three digits (for example 201) but is usually rather longer (for example 1110102).
(b) Clearly there are three ways in which the first k digits of a stream may all be the same. What is the probability that the first k digits are all the same?
[1 mark]
(c) By using the difference equation above, or otherwise, determine the number of ways in which the first k digits of a stream could comprise exactly two of the three available digits.
(d) What is the probability that the first k digits comprise exactly two of the three available digits?
(e) For $r \geqslant 2$, what is the probability that a stream is r digits long?
(f) What is the expected length of a stream?
Hint: It may be useful to note that

$$
\sum_{r=1}^{\infty} r x^{r-1}=\frac{1}{(1-x)^{2}} \quad \text { if } \quad 0 \leqslant x<1
$$

