Discrete Mathematics

Let (A, \leq_A) and (B, \leq_B) be partially ordered sets.

(a) Define the *product order* on $A \times B$ and prove that it is a partial order.

[4 marks]

The upper bound of a set $S \subseteq A$ is an element $u \in A$ (but not necessarily in S) such that $\forall s \in S \, . \, s \leq u$. The *least upper bound* of S is an upper bound of S that is less than every other upper bound of S. The greatest lower bound is defined similarly.

A *lattice* is a partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound.

- (b) Prove that $(\mathbb{N}, |)$, the natural numbers under the divisibility order, form a lattice. [4 marks]
- (c) Given a set X, prove that $(\mathcal{P}(X), \subseteq)$, the power set of X under set inclusion, forms a lattice. [4 marks]
- (d) Does every subset of $(\mathbb{N}, |)$ have a least upper bound and a greatest lower bound? Justify your answer. What about $(\mathbb{N}_0, |)$ and $(\mathcal{P}(X), \subseteq)$? [4 marks]
- (e) If (A, \leq_A) and (B, \leq_B) are lattices, show that $A \times B$ is a lattice under the product order. [4 marks]