2001 Paper 1 Question 2

Discrete Mathematics

(a) Prove the fundamental theorem of arithmetic, that any natural number can be expressed as a product of powers of primes and that such an expression is unique up to the order of the primes.
(b) Given a natural number n, let $d(n)$ be the number of divisors of n (including 1 and n).

If $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, prove that

$$
\begin{equation*}
d\left(p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots p_{k}{ }^{\alpha_{k}}\right)=\prod_{i=1}^{k}\left(\alpha_{i}+1\right) . \tag{3marks}
\end{equation*}
$$

(c) What is the smallest number with 36 factors?

