2001 Paper 13 Question 10

Numerical Analysis II

(a) Taylor's theorem states that if $x \in[a, b]$ and $f \in C^{N+1}[a, b]$

$$
f(x)=T_{N}(a)+\frac{1}{N!} \int_{a}^{x} f^{(N+1)}(t)(x-t)^{N} d t
$$

where

$$
T_{N}(a)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\cdots+\frac{(x-a)^{N}}{N!} f^{(N)}(a) .
$$

Prove Taylor's theorem.
(b) Peano's theorem states that if a quadrature rule integrates polynomials of degree N exactly over an interval $[a, b]$ then the error in integrating $f \in C^{N+1}[a, b]$ can be expressed as

$$
E(f)=\int_{a}^{b} f^{(N+1)}(t) K(t) d t
$$

where

$$
K(t)=\frac{1}{N!} E_{x}\left[(x-t)_{+}^{N}\right] .
$$

Explain the notation $E(f), E_{x}$ and $(x-t)_{+}^{N}$.
(c) Use Taylor's theorem to prove Peano's theorem.
(d) Under what additional condition may the simplified formula

$$
E(f)=\frac{f^{(N+1)}(\xi)}{(N+1)!} E\left(x^{N+1}\right)
$$

be applied?

