2001 Paper 12 Question 10

Numerical Analysis II

(a) A cubic spline over knots $x_{1}, x_{2}, \ldots x_{n}$ is defined by

$$
\begin{aligned}
\phi(x)= & \frac{\left(x-x_{j}\right) y_{j+1}+\left(x_{j+1}-x\right) y_{j}}{d_{j}} \\
& -\frac{\left(x-x_{j}\right)\left(x_{j+1}-x\right)\left\{\left(d_{j}+x_{j+1}-x\right) \mu_{j}+\left(d_{j}+x-x_{j}\right) \mu_{j+1}\right\}}{6 d_{j}}
\end{aligned}
$$

for $x \in\left[x_{j}, x_{j+1}\right]$ where $d_{j}=x_{j+1}-x_{j}$. The spline is continuous in its first and second derivatives.
(i) Find $\phi\left(x_{j}\right)$.
(ii) Find formulae for $\phi^{\prime}\left(x_{j}\right)$ and $\phi^{\prime}\left(x_{j+1}\right)$ for $x \in\left[x_{j}, x_{j+1}\right]$. [4 marks]
(iii) What is $\phi^{\prime \prime}\left(x_{j}\right)$?
(b) Form a set of equations for computing the unknowns $\left\{\mu_{j}\right\}$, specifying suitable end conditions to simplify these equations.
(c) What are the important properties of these equations with respect to their numerical solution?

