2001 Paper 11 Question 9

Numerical Analysis I

(a) What is meant by a symmetric positive definite matrix?
(b) Verify that $\mathbf{A}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ is positive definite.
(c) The Choleski factorisation $\mathbf{A}=\mathbf{L D L}^{T}$ is to be applied to the solution of $\mathbf{A x}=\mathbf{b}$, where $\mathbf{b}=\binom{1}{1}$. It is found that

$$
\mathbf{L}=\left(\begin{array}{cc}
1 & \\
\frac{1}{2} & 1
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{ll}
2 & \\
& \frac{3}{2}
\end{array}\right)
$$

The next step in the method is to solve $\mathbf{L y}=\mathbf{b}$ to get $\mathbf{y}=\binom{1}{\frac{1}{2}}$. Form the upper triangular system of equations needed to complete the solution.
[4 marks]
(d) Solve these equations.
(e) What is meant by the order of convergence of an iterative process? [1 mark]
(f) State the Newton-Raphson formula for solving $f(x)=0$ for scalar x. What is the order of convergence of this method?
(g) This method is used to solve $f(x)=x^{2}-4=0$ using IEEE Double Precision with a certain starting value x_{0}. It is found that the third iterate $x_{3} \simeq 2.0006$, and $x_{4} \simeq 2.00000009$. Very roughly, how many significant decimal digits of accuracy would you expect in x_{5} ? Explain your answer.
[4 marks]

