2001 Paper 11 Question 9

Numerical Analysis I

- (a) What is meant by a symmetric positive definite matrix? [3 marks]
- (b) Verify that $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ is positive definite. [4 marks]
- (c) The Choleski factorisation $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T$ is to be applied to the solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. It is found that

$$\mathbf{L} = \begin{pmatrix} 1 & \\ \frac{1}{2} & 1 \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} 2 & \\ & \frac{3}{2} \end{pmatrix}.$$

The next step in the method is to solve $\mathbf{L}\mathbf{y} = \mathbf{b}$ to get $\mathbf{y} = \begin{pmatrix} 1\\ \frac{1}{2} \end{pmatrix}$. Form the upper triangular system of equations needed to complete the solution.

[4 marks]

- (d) Solve these equations. [2 marks]
- (e) What is meant by the order of convergence of an iterative process? [1 mark]
- (f) State the Newton–Raphson formula for solving f(x) = 0 for scalar x. What is the order of convergence of this method? [2 marks]
- (g) This method is used to solve $f(x) = x^2 4 = 0$ using IEEE Double Precision with a certain starting value x_0 . It is found that the third iterate $x_3 \simeq 2.0006$, and $x_4 \simeq 2.00000009$. Very roughly, how many significant decimal digits of accuracy would you expect in x_5 ? Explain your answer. [4 marks]