Mathematics for Computation Theory

(a) Let M be an N-state deterministic finite automaton over the finite alphabet S. Write $l(w)$ for the length of words $w \in S^{*}$. Suppose that M accepts the word $x \in S^{*}$, where $l(x) \geqslant N$.
(i) Show that x is a concatenation of words uvw, where $l(u)<N$, $1 \leqslant l(v) \leqslant N$, and M accepts the word $z_{k}=u v^{k} w$ for all natural numbers $k \in \mathbb{N}$. [8 marks]
(ii) Hence show that if M accepts an infinite set of words $x \in S^{*}$, it must accept some word $y \in S^{*}$ such that $N \leqslant l(y)<2 N$.
(b) A ternary integer representation is defined as follows using a variant of BNF:

```
        <zero> ::= 0
<non-zero> ::= 1 | 2
    <digit> ::= <zero> | <non-zero>
        <nzi> ::= <non-zero> | <nzi> <digit>
<integer> ::= <zero> | <nzi> | - <nzi>
```

(i) Design a deterministic finite automaton with alphabet $S=\{-, 0,1,2\}$ that accepts precisely the valid integer representations.
[6 marks]
(ii) Write down a regular expression that denotes the event recognised by your automaton.
[2 marks]
[If you wish, you may refer to characters - $, 0,1,2$ by a, b, c, d respectively.]

