Mathematics for Computation Theory

(a) Define precisely what is meant by the following:
(i) \prec is a well-founded relation on the set S;
(ii) $y \in S$ is a minimal element for \prec.
(b) If \prec is a well-founded relation on S, show that every non-empty subset of S contains an element that is minimal for \prec.
(c) Let (P, \leqslant) be a finite partially ordered set. A chain $X \subseteq P$ is a totally ordered subset of P, and an antichain $Y \subseteq P$ is a subset such that no two distinct elements $y, y^{\prime} \in Y$ are comparable. The antichains $\left\{Y_{i} \mid 1 \leqslant i \leqslant k\right\}$ cover P if $P \subseteq \bigcup_{i=1}^{k} Y_{i}$.

Prove that the smallest possible number of antichains in a cover of P is exactly the length of a longest chain in P. [Hint: If not, consider the set of minimal elements in a minimal counterexample.]
[13 marks]

