2001 Paper 10 Question 11

Mathematics for Computation Theory

- (a) Define precisely what is meant by the following:
 - (i) \prec is a well-founded relation on the set S;
 - (*ii*) $y \in S$ is a minimal element for \prec . [3 marks]
- (b) If \prec is a well-founded relation on S, show that every non-empty subset of S contains an element that is minimal for \prec . [4 marks]
- (c) Let (P, \leq) be a finite partially ordered set. A chain $X \subseteq P$ is a totally ordered subset of P, and an antichain $Y \subseteq P$ is a subset such that no two distinct elements $y, y' \in Y$ are comparable. The antichains $\{Y_i \mid 1 \leq i \leq k\}$ cover P if $P \subseteq \bigcup_{i=1}^k Y_i$.

Prove that the smallest possible number of antichains in a cover of P is exactly the length of a longest chain in P. [Hint: If not, consider the set of minimal elements in a minimal counterexample.]

[13 marks]