Continuous Mathematics

(a) The MacLaurin series for a continuous, infinitely differentiable function, $f(x)$, is:

$$
f(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots+\frac{f^{(k)}(0)}{k!} x^{k}+\cdots
$$

Derive the MacLaurin series for each of $\sin (x), \cos (x)$, and e^{x}.
(b) Hence, or otherwise, prove that:

$$
e^{i \phi}=\cos \phi+i \sin \phi
$$

where $i=\sqrt{-1}$
(c) Prove that the box function, $b(x)$:

$$
b(x)=\left\{\begin{array}{cc}
1, & |x| \leqslant \frac{1}{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

has the Fourier transform, $B(\nu)$:

$$
B(\nu)=\frac{\sin \pi \nu}{\pi \nu}
$$

where ν is frequency measured in Hertz (cycles per second).
(d) The convolution of $b(x)$ with itself is $t(x)$:

$$
t(x)=b(x) * b(x)=\left\{\begin{array}{cc}
1+x, & -1 \leqslant x \leqslant 0 \\
1-x, & 0 \leqslant x \leqslant 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Hence, or otherwise, find the Fourier transform, $T(\nu)$, of $t(x)$. [4 marks]

