2000 Paper 9 Question 13

Types

Give the axiom and rules of the type system for polymorphic lambda calculus (PLC). [6 marks]

Given any function ρ mapping type variables α to boolean values $\mathbf{b} \in \{\mathbf{true}, \mathbf{false}\}$, we extend ρ to a function on all PLC types by defining

$$\rho(\tau \to \tau') = \rho(\tau) \Rightarrow \rho(\tau')$$

$$\rho(\forall \alpha(\tau)) = \rho[\alpha \mapsto \mathbf{true}](\tau) \& \rho[\alpha \mapsto \mathbf{false}](\tau)$$

where \Rightarrow and & are the usual boolean operations of implication and conjunction, and where $\rho[\alpha \mapsto \mathbf{b}]$ is the function mapping α to \mathbf{b} and otherwise acting like ρ . For example, show that for any ρ we have $\rho(\forall \alpha(\alpha \to \alpha)) = \mathbf{true}$ and $\rho(\forall \alpha(\alpha)) = \mathbf{false}$. [2 marks]

Let $\Phi(\Gamma, M, \tau)$ be the following property of PLC typing judgements $\Gamma \vdash M : \tau$.

"For all ρ , if $\rho(\tau) =$ **false** then Γ contains a type assignment $x_i : \tau_i$ with $\rho(\tau_i) =$ **false**."

Show that $\Phi(\Gamma, M, \tau)$ is closed under the axiom and rules of the PLC type system. (You may assume without proof that if α is not free in τ then $\rho[\alpha \mapsto \mathbf{b}](\tau) = \rho(\tau)$; and also that type substitutions $\tau'[\tau/\alpha]$ satisfy $\rho(\tau'[\tau/\alpha]) = \rho[\alpha \mapsto \rho(\tau)](\tau')$.) [10 marks]

Deduce that there is no *closed* PLC expression of type $\forall \alpha(\alpha)$. [2 marks]