2000 Paper 9 Question 11

Information Theory and Coding

(a) Prove that the information measure is additive: that the information gained from observing the combination of N independent events, whose probabilities are p_{i} for $i=1 \ldots N$, is the sum of the information gained from observing each one of these events separately and in any order.
(b) What is the shortest possible code length, in bits per average symbol, that could be achieved for a six-letter alphabet whose symbols have the following probability distribution?

$$
\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{32}\right\}
$$

(c) Suppose that ravens are black with probability 0.6 , that they are male with probability 0.5 and female with probability 0.5 , but that male ravens are 3 times more likely to be black than are female ravens.

If you see a non-black raven, what is the probability that it is male? [4 marks]
How many bits worth of information are contained in a report that a non-black raven is male?
[1 mark]
Rank-order for this problem, from greatest to least, the following uncertainties:
(i) uncertainty about colour
(ii) uncertainty about gender
(iii) uncertainty about colour, given only that a raven is male
(iv) uncertainty about gender, given only that a raven is non-black
(d) If a continuous signal $f(t)$ is modulated by multiplying it with a complex exponential wave $\exp (i \omega t)$ whose frequency is ω, what happens to the Fourier spectrum of the signal?

Name a very important practical application of this principle, and explain why modulation is a useful operation.

How can the original Fourier spectrum later be recovered?
(e) Which part of the 2D Fourier Transform of an image, the amplitude spectrum or the phase spectrum, is indispensable in order for the image to be intelligible?

Describe a demonstration that proves this.
[2 marks]

