2000 Paper 9 Question 10

Numerical Analysis II

Explain the terms (a) positive definite, (b) positive semi-definite for a symmetric matrix **A**. If a square matrix **B** is non-singular, which of the properties (a) or (b) most accurately describes $\mathbf{B}^T \mathbf{B}$? What if **B** is singular? [4 marks]

State Schwarz's inequality for the product **AB**. In what way is this modified for the product **Ax**, where **x** is a vector? What are the singular values of **A**, and how are they related to the l_2 norm of **A**? In the singular value decomposition $\mathbf{A} = \mathbf{UWV}^T$, what is **W**? [5 marks]

Let $\hat{\mathbf{x}}$ be an approximate solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$, and write $\mathbf{r} = \mathbf{b} - \mathbf{A}\hat{\mathbf{x}}$, $\mathbf{e} = \mathbf{x} - \hat{\mathbf{x}}$. Find an expression which is an upper bound for the relative error $||\mathbf{e}||/||\mathbf{x}||$ in terms of computable quantities. Explain how this result may be interpreted if the l_2 norm is used. [8 marks]

Suppose **A** is a 5 × 5 matrix and $\mathbf{Ax} = \mathbf{b}$ is to be solved by singular value decomposition. If machine epsilon $\simeq 10^{-15}$ and the singular values of **A** are $1, 10^{-6}, 10^{-10}, 10^{-17}, 0$ write down the generalised inverse \mathbf{W}^+ that you would use. [3 marks]