2000 Paper 6 Question 11

Logic and Proof

For each of the given pairs of terms, give a most general unifier or indicate why none exists. (Here x, y, z are variables while a, b are constant symbols.)

$$
\begin{aligned}
& h(x, y, x) \quad \text { and } \quad h(y, z, u) \\
& h(x, y, z) \text { and } h(f(y), z, x) \\
& h(x, y, b) \text { and } h(a, x, y) \\
& h(x, y, z) \text { and } h(g(y, y), g(z, z), g(u, u))
\end{aligned}
$$

A standard unification algorithm takes a pair of terms t_{1} and t_{2} and returns a substitution θ such that $t_{1} \theta=t_{2} \theta$. Show how this algorithm can be used to find the unifier of several $(n>2)$ terms $t_{1}, t_{2}, \ldots, t_{n}$: a substitution θ such that $t_{1} \theta=t_{2} \theta=\cdots=t_{n} \theta$. Indicate how the unifier is constructed from the unifiers of $n-1$ pairs of terms. (Assume that all required unifiers exist and ignore the question of whether the unifiers are most general.)

Prove using resolution the formula

$$
(\forall x[P(x) \leftrightarrow(Q(x) \wedge \neg Q(f(x)))]) \rightarrow \exists y \neg P(y)
$$

or indicate why this formula is not a theorem.
[10 marks]

