2000 Paper 5 Question 12

Complexity Theory

Give precise definitions of polynomial time reductions and NP-completeness.
[2 marks each]

Consider the following two decision problems on undirected graphs.

3-node-colourability: the collection of graphs $G=(V, E)$ for which there is a mapping $\chi: V \rightarrow\{r, g, b\}$ such that if $(u, v) \in E$, then $\chi(u) \neq \chi(v)$.

3-edge-colourability: the collection of graphs $G=(V, E)$ for which there is a mapping $\chi: E \rightarrow\{r, g, b\}$ such that if $(u, v),\left(u, v^{\prime}\right) \in E$, with $v \neq v^{\prime}$, then $\chi(u, v) \neq \chi\left(u, v^{\prime}\right)$.

Show that there is a polynomial time reduction from 3-edge-colourability to 3-node-colourability.

The problem 3-edge-colourability is known to be NP-complete. Using this information, for each of the following statements, state whether or not it is true. In each case, give complete justification for your answer.
(a) There is a polynomial time reduction from 3-node-colourability to 3-edgecolourability.
(b) 3-node-colourability is NP-complete.
(c) 3-edge-colourability is in PSPACE.

