2000 Paper 2 Question 7

Regular Languages and Finite Automata

For each kind of regular expression over an alphabet Σ, define the language $L(\mathbf{r})$ of strings matching a regular expression \mathbf{r} of that kind.

Define the language $L(M)$ accepted by a deterministic finite automaton M.

Prove that for every deterministic finite automaton M with alphabet of input symbols Σ it is possible to construct a regular expression \mathbf{r} over Σ satisfying $L(\mathbf{r})=L(M)$.
[10 marks]
Illustrate your proof by constructing such an \mathbf{r} for the deterministic finite automaton with state set $\{0,1,2\}$, alphabet of input symbols $\{a, b\}$, initial state 0 , accepting states 1 and 2 , and next-state function

$$
\begin{aligned}
& (0, a) & \mapsto 2, & (1, a)
\end{aligned} \mapsto 1, \quad(2, a) \mapsto 0, ~ \mapsto, ~ r y, ~(2, b) \mapsto 2 .
$$

