2000 Paper 1 Question 8

Discrete Mathematics

The following fragment of ML implements Stein's algorithm for evaluating the Greatest Common Divisor, (a, b), of two natural numbers, a and b :

```
fun stein a b c =
    if a = b then a * c
    else
        if (a mod 2) = 0 then
            if (b mod 2) = 0 then stein (a div 2) (b div 2) (c * 2)
            else stein (a div 2) b c
        else
            if (b mod 2) = 0 then stein a (b div 2) c
            else
                if a > b then stein (a - b) b c
                else stein (b - a) a c;
fun gcd a b = stein a b 1;
```

Prove that, at each iteration within the Stein algorithm, the product $(a, b) \times c$ remains invariant.

Observing that the procedure starts with $c=1$ and concludes by returning $a \times c$ when $a=b$, deduce that the algorithm correctly calculates the Greatest Common Divisor.

Show also that after two iterations the product $a \times b$ is reduced by at least a factor of 2 .

Deduce that Stein's algorithm is at least as efficient as Euclid's algorithm.

