2000 Paper 1 Question 2

Discrete Mathematics

State the conditions for a relation to be a partial order. [3 marks]

A partition of a natural number n is a collection of natural numbers (possibly including duplicates and in any order) whose sum is n. Let P_n be the set of partitions of n; for example, $P_4 = \{(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)\}$. Order the partitions in P_n as follows:

$$(a_1, a_2, \dots a_r) \leq (b_1, b_2, \dots b_s)$$
 if the (a_i) and (b_j) can be rearranged so that
 $b_1 = a_1 + a_2 + \dots + a_{k_1}$
 $b_2 = a_{k_1+1} + a_{k_1+2} + \dots + a_{k_2}$
 \vdots
 $b_{s-1} = a_{k_{s-2}+1} + a_{k_{s-2}+2} + \dots + a_{k_{s-1}}$
 $b_s = a_{k_{s-1}+1} + a_{k_{s-1}+2} + \dots + a_r$

Note that $(2,1,1) \leq (3,1)$, and $(2,1,1) \leq (2,2)$ but (3,1) and (2,2) cannot be compared.

Show that \leq is a partial order on P_n . [4 marks]

 P_5 has seven elements; draw the Hasse diagram for (P_5, \leq) . [3 marks]