2000 Paper 1 Question 2

Discrete Mathematics

State the conditions for a relation to be a partial order.
A partition of a natural number n is a collection of natural numbers (possibly including duplicates and in any order) whose sum is n. Let P_{n} be the set of partitions of n; for example, $P_{4}=\{(4),(3,1),(2,2),(2,1,1),(1,1,1,1)\}$. Order the partitions in P_{n} as follows:

$$
\begin{aligned}
\left(a_{1}, a_{2}, \ldots a_{r}\right) & \leqslant\left(b_{1}, b_{2}, \ldots b_{s}\right) \text { if the }\left(a_{i}\right) \text { and }\left(b_{j}\right) \text { can be rearranged so that } \\
b_{1} & =a_{1}+a_{2}+\cdots+a_{k_{1}} \\
b_{2} & =a_{k_{1}+1}+a_{k_{1}+2}+\cdots+a_{k_{2}} \\
& \vdots \\
b_{s-1} & =a_{k_{s-2}+1}+a_{k_{s-2}+2}+\cdots+a_{k_{s-1}} \\
b_{s} & =a_{k_{s-1}+1}+a_{k_{s-1}+2}+\cdots+a_{r}
\end{aligned}
$$

Note that $(2,1,1) \leqslant(3,1)$, and $(2,1,1) \leqslant(2,2)$ but $(3,1)$ and $(2,2)$ cannot be compared.

Show that \leqslant is a partial order on P_{n}.
P_{5} has seven elements; draw the Hasse diagram for $\left(P_{5}, \leqslant\right)$.

