2000 Paper 13 Question 10

Numerical Analysis II

Explain the terms (a) positive definite, (b) positive semi-definite for a symmetric matrix \mathbf{A}. If a square matrix \mathbf{B} is non-singular, which of the properties (a) or (b) most accurately describes $\mathbf{B}^{T} \mathbf{B}$? What if \mathbf{B} is singular?

State Schwarz's inequality for the product AB. In what way is this modified for the product $\mathbf{A x}$, where \mathbf{x} is a vector? What are the singular values of \mathbf{A}, and how are they related to the l_{2} norm of \mathbf{A} ? In the singular value decomposition $\mathbf{A}=\mathbf{U W} \mathbf{V}^{T}$, what is \mathbf{W} ?

Let $\hat{\mathbf{x}}$ be an approximate solution of $\mathbf{A x}=\mathbf{b}$, and write $\mathbf{r}=\mathbf{b}-\mathbf{A} \hat{\mathbf{x}}, \mathbf{e}=\mathbf{x}-\hat{\mathbf{x}}$. Find an expression which is an upper bound for the relative error $\|\mathbf{e}\| /\|\mathbf{x}\|$ in terms of computable quantities. Explain how this result may be interpreted if the l_{2} norm is used.

Suppose \mathbf{A} is a 5×5 matrix and $\mathbf{A x}=\mathbf{b}$ is to be solved by singular value decomposition. If machine epsilon $\simeq 10^{-15}$ and the singular values of \mathbf{A} are $1,10^{-6}, 10^{-10}, 10^{-17}, 0$ write down the generalised inverse \mathbf{W}^{+}that you would use.
[3 marks]

