2000 Paper 13 Question 10

Numerical Analysis II

Explain the terms (a) positive definite, (b) positive semi-definite for a symmetric matrix \mathbf{A} . If a square matrix \mathbf{B} is non-singular, which of the properties (a) or (b) most accurately describes $\mathbf{B}^T \mathbf{B}$? What if \mathbf{B} is singular? [4 marks]

State Schwarz's inequality for the product AB. In what way is this modified for the product Ax, where x is a vector? What are the singular values of A, and how are they related to the l_2 norm of A? In the singular value decomposition $A = UWV^T$, what is W?

Let $\hat{\mathbf{x}}$ be an approximate solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$, and write $\mathbf{r} = \mathbf{b} - \mathbf{A}\hat{\mathbf{x}}$, $\mathbf{e} = \mathbf{x} - \hat{\mathbf{x}}$. Find an expression which is an upper bound for the relative error $||\mathbf{e}||/||\mathbf{x}||$ in terms of computable quantities. Explain how this result may be interpreted if the l_2 norm is used.

Suppose **A** is a 5×5 matrix and $\mathbf{A}\mathbf{x} = \mathbf{b}$ is to be solved by singular value decomposition. If $machine\ epsilon \simeq 10^{-15}$ and the singular values of **A** are $1, 10^{-6}, 10^{-10}, 10^{-17}, 0$ write down the generalised inverse \mathbf{W}^+ that you would use. [3 marks]