2000 Paper 12 Question 8

Prolog for Artificial Intelligence

Consider the following problem to be solved using a Prolog program:
Given a closed planar polygon chain represented as a list of n vertices

$$
\left[\mathrm{v}\left(x_{1}, y_{1}\right), \mathrm{v}\left(x_{2}, y_{2}\right), \ldots, \mathrm{v}\left(x_{n}, y_{n}\right)\right]
$$

compute the area of the enclosed polygon, and the orientation of the chain. The area is computed by the line integral $1 / 2 \int x \mathrm{~d} y-y \mathrm{~d} x$ where the integral is over the polygon chain. A naïve solution is given by the following program, which defines the predicate area. The goal area(Chain, Area) succeeds when Chain is the list of vertices, and the magnitude of Area is the area of the polygon bounded by the chain. The sign of Area is positive if the orientation of the polygon is anticlockwise and negative if it is clockwise:

```
area([X],0).
area([v(X1,Y1),v(X2,Y2)|VS],Area):-
    area([v(X2,Y2)|VS],Temp),
    Area is Temp + (X1 * Y2 - Y1 * X2) / 2.
```

Explain how vertices are processed by this procedure.
Why does this program execute inefficiently?
Write an alternative definition that is tail-recursive and makes use of accumulator variables.

Explain why your alternative definition executes more efficiently.

