2000 Paper 12 Question 10

Numerical Analysis II

A Riemann integral over $[a, b]$ is defined by

$$
\int_{a}^{b} f(x) d x=\lim _{\substack{n \rightarrow \infty \\ \Delta \xi \rightarrow 0}} \sum_{i=1}^{n}\left(\xi_{i}-\xi_{i-1}\right) f\left(x_{i}\right)
$$

Explain the terms Riemann sum and mesh norm.
With respect to an integral over $[-1,1]$ which of the following are not Riemann sums? Give explanations.
(a) $0.2 f(-0.9)+0.8 f(-0.1)+0.8 f(+0.1)+0.2 f(+0.9)$
(b) $0.8 f(-0.9)+0.2 f(-0.1)+0.2 f(+0.1)+0.8 f(+0.9)$
(c) $0.7 f(-0.6)+0.3 f(-0.4)+0.3 f(+0.4)+0.7 f(+0.6)$
(d) $0.5 f(-0.7)+0.8 f(0)+0.5 f(+0.7)$
(e) $0.3 f(-0.7)+1.0 f(+0.1)+0.7 f(+0.7)$

Suppose \mathbf{R} is a rule that integrates constants exactly over $[-1,1]$, and $f(x)$ is bounded and Riemann-integrable over $[a, b]$. Write down a formula for the composite rule $(n \times \mathbf{R}) f$ and prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(n \times \mathbf{R}) f=\int_{a}^{b} f(x) d x \tag{6marks}
\end{equation*}
$$

Which of the examples (a) to (e) converge in composite form?
Does the rule

$$
-0.5 f(-1)+1.5 f(-0.4)+1.5 f(+0.4)-0.5 f(+1)
$$

converge in composite form? Comment on its suitability for this purpose.
[3 marks]

