2000 Paper 11 Question 9

Computation Theory

Let \mathbb{N} be the natural numbers $\{0,1,2 \ldots\}$.
What is meant by each of the following statements?

- The subset $S \subseteq \mathbb{N}$ is recursive.
- The subset $S \subseteq \mathbb{N}$ is recursively enumerable.

How would you extend the definition of recursive enumeration to sets of computable functions?

A sequence of natural numbers is a total function $s: \mathbb{N} \rightarrow \mathbb{N}$. The sequence is recursive if and only if s is computable.

A finite sequence σ of natural numbers is specified by a pair (l, x), where $l \in \mathbb{N}$ is the number of elements, and $x:[1, l] \rightarrow \mathbb{N}$ is a function that defines those elements. The case $l=0$ defines the null sequence.

In each of the following cases, establish whether the set defined is recursively enumerable:
(a) the set of all recursive subsets of \mathbb{N}
(b) the set of all recursive sequences of natural numbers
(c) the set of all finite sequences of natural numbers

