2000 Paper 11 Question 8

Mathematics for Computation Theory

Let E, F be events over a finite alphabet S. Define the events $E+F, E F$ and E^{*}.
[3 marks]
Show that:
(a) $E^{*}=1+E E^{*}$
(b) $E(F E)^{*}=(E F)^{*} E$

State Kleene's Theorem on the structure of events accepted by some Deterministic Finite Automaton (DFA).

Consider the following DFA:

Here α is the initial state, γ and δ the two accepting states. Show that the event accepted is

$$
b^{*} a\left(a^{*} b b^{*} a\right)^{*}\left\{1+a^{*} b\right\} .
$$

[Hint. If $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ is a partitioning of the transition matrix of a DFA so that A and D are square, then

$$
M^{*}=\left(\begin{array}{cc}
\left(A+B D^{*} C\right)^{*} & A^{*} B\left(D+C A^{*} B\right)^{*} \\
D^{*} C\left(A+B D^{*} C\right)^{*} & \left(D+C A^{*} B\right)^{*}
\end{array}\right)
$$

with the same partitioning. Partition the states in the order $\{\alpha, \beta\},\{\gamma, \delta\}$. You need calculate only the upper right component of M^{*}.]

