2000 Paper 11 Question 10

Numerical Analysis I

Define the absolute error ε_x and relative error δ_x in representing a number x. How are these errors related? Which type of error is associated with the term loss of significance? Define machine epsilon ε_m . [4 marks]

Write down expressions for the worst case errors $|\delta_{xy}|$ and $|\varepsilon_{xy}|$ in computing xy. Express your answers in terms of δ_x and δ_y . Hence find expressions for $|\varepsilon_{xy+z}|$ and $|\delta_{xy+z}|$ in terms of δ_x , δ_y and δ_z . [6 marks]

Assuming $|\delta_x| = |\delta_y| = |\delta_z| = \varepsilon_m$, find an expression for $|\delta_{xy+z}|/\varepsilon_m$. When would you expect loss of significance in computing xy + z? [3 marks]

The formula

$$\tilde{f}'(x) = \frac{f(x+h) - f(x)}{h}$$

is used to compute f'(x) for a certain function f(x) when $\varepsilon_m = 10^{-10}$. The formula is applied at x = 0.2 where f(0.2) = 1.1.

- (a) If $h = 10^{-3}$ then $\tilde{f}'(0.2) \simeq 8.44$.
- (b) If $h = 10^{-8}$ then $\tilde{f}'(0.2) \simeq 8.40$.

However, it is known that f'(0.2) = 8.42 to 3 significant digits. Why is (a) such a poor estimate? Why is (b) such a poor estimate? [4 marks]

Suggest a more suitable value for h. Roughly how many correct significant decimal digits would you expect to get in your answer? [3 marks]