2000 Paper 11 Question 1

Digital Electronics

What is the maximum number of terms there can be in a minimal sum of products form of a function of n boolean variables?

Consider a two-bit multiplier with inputs $x_{1}, x_{0}, y_{1}, y_{0}$ and outputs $z_{3}, z_{2}, z_{1}, z_{0}$ such that

$$
Z=Y \times X
$$

where Z, Y, X are the positive integers represented by $z_{3} z_{2} z_{1} z_{0}, y_{1} y_{0}$ and $x_{1} x_{0}$ using the obvious representation.

Find a minimal sum of products expression for each of z_{3}, z_{2}, z_{1} and z_{0}. [10 marks]

Comment on the complexity of building an eight-bit multiplier using a minimal sum of products form.
[3 marks]
Describe another way of building an eight-bit multiplier.
[5 marks]

