2000 Paper 10 Question 10

Mathematics for Computation Theory

Let A be a set, R be a relation on A. What conditions must be satisfied for the following?

- (i) R is a partial order on A [3 marks]
- (*ii*) R is a total order on A [1 mark]
- (iii) R is a well-founded relation on A [2 marks]

 $x \in A$ is a minimal element for R if $y \in A, (y, x) \in R \Rightarrow y = x$.

 $x \in A$ is a maximal element for R if $y \in A, (x, y) \in R \Rightarrow y = x$.

For each of the sets $A = \mathbb{N}$ (natural numbers) and $A = \mathbb{Z}$ (integers) we define relations:

- (a) $R_1 = \leq$, the standard ordering
- (b) $(a,b) \in R_2$ if and only if $\exists q \in A$ such that aq = b
- (c) $(a,b) \in R_3$ if and only if $\exists p \in A$ such that ap = b, where $|p| \in \mathbb{N}$ is a prime

Explain with reasons which of conditions (i)-(iii) is satisfied when a relation R_j is defined on either \mathbb{N} or \mathbb{Z} . Identify the maximal and minimal elements in each case. [14 marks]