2000 Paper 10 Question 10

Mathematics for Computation Theory

Let A be a set, R be a relation on A. What conditions must be satisfied for the following?
(i) R is a partial order on A
(ii) R is a total order on A
(iii) R is a well-founded relation on A
$x \in A$ is a minimal element for R if $y \in A,(y, x) \in R \Rightarrow y=x$.
$x \in A$ is a maximal element for R if $y \in A,(x, y) \in R \Rightarrow y=x$.
For each of the sets $A=\mathbb{N}$ (natural numbers) and $A=\mathbb{Z}$ (integers) we define relations:
(a) $\quad R_{1}=\leqslant$, the standard ordering
(b) $(a, b) \in R_{2}$ if and only if $\exists q \in A$ such that $a q=b$
(c) $(a, b) \in R_{3}$ if and only if $\exists p \in A$ such that $a p=b$, where $|p| \in \mathbb{N}$ is a prime

Explain with reasons which of conditions $(i)-(i i i)$ is satisfied when a relation R_{j} is defined on either \mathbb{N} or \mathbb{Z}. Identify the maximal and minimal elements in each case.
[14 marks]

