1999 Paper 8 Question 15

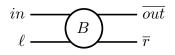
Communicating Automata and Pi Calculus

. .

Explain the notions of *abstraction* and *concretion* in the π -calculus. Explain the components of a *commitment* $P \xrightarrow{\alpha} A$, and say what it means for each form which α may take. (You need not give the rules of commitment.) Define *strong bisimulation* in terms of commitments. [5 marks]

Consider each pair of the three processes $(\text{new } x)\overline{x}\langle y\rangle$, $(\text{new } x)\overline{y}\langle x\rangle$, and 0. Are they structurally congruent (\equiv) ? Are they strongly equivalent (\sim) ? Briefly justify each of your six answers. [4 marks]

The following equations define the behaviour of a buffer cell which has the ability to cut itself out of a chain of similar cells:



$$B(in, out, \ell, r) \stackrel{\text{def}}{=} in(x).C\langle x, in, out, \ell, r \rangle + \overline{r} \langle in, \ell \rangle.\mathbf{0}$$

$$C(x, in, out, \ell, r) \stackrel{\text{def}}{=} \overline{out}\langle x \rangle.B\langle in, out, \ell, r \rangle + \ell(in', \ell').C\langle x, in', out, \ell', r \rangle$$

Let $P = \text{new } mid m (B\langle in, mid, \ell, m \rangle | C\langle x, mid, out, m, r \rangle)$. Express P as a summation up to \sim , i.e. $P \sim \Sigma \alpha_i A_i$. Use structural congruence to make the expression as simple as possible. Justify your expression. [6 marks]

Now suppose that the name *out* is replaced by *in* in the definition of P. What effect does this have upon the behaviour of P? Briefly justify your answer in terms of commitments. [5 marks]