1999 Paper 8 Question 14

Numerical Analysis II

State a recurrence formula for the sequence of Chebyshev polynomials, $\left\{T_{n}(x)\right\}$, and list these as far as $T_{5}(x)$.

What is the best polynomial approximation over $[-1,1]$ to x^{n} using polynomials of lower degree, and what is its degree? Use this property to explain the method of economisation of a Taylor series. How can the error in one economisation step be estimated?

The error in Lagrange interpolation can be expressed in the form

$$
f(x)-L_{n-1}(x)=\frac{f^{n}(\xi)}{n!} \prod_{j=1}^{n}\left(x-x_{j}\right)
$$

for a suitable function $f(x)$. What is the best choice for abscissae $\left\{x_{j}\right\}$ and why?

The function $\sin x$ may be approximated by the truncated Taylor series

$$
P_{2 n-1}(x)=\sum_{i=1}^{n}(-1)^{i-1} \frac{x^{2 i-1}}{(2 i-1)!} .
$$

Estimate the maximum absolute error over $[-1,1]$ for both $P_{3}(x)$ and $P_{5}(x)$. Perform one economisation step on $P_{5}(x)$ and show that the resulting polynomial is more accurate than $P_{3}(x)$.

