1999 Paper 7 Question 13

Communicating Automata and Pi Calculus

Concurrent processes are defined by the syntax

$$P \quad ::= \quad A \langle b_1, \dots, b_n \rangle \quad \left| \begin{array}{c|c} \Sigma \alpha_i . P_i \end{array} \right| \quad P_1 \mid P_2 \quad \left| \begin{array}{c|c} \mathsf{new} \ a \ P \end{array} \right|$$

where each process identifier A is equipped with a defining equation $A(a_1, \ldots, a_n) \stackrel{\text{def}}{=} P_A$. Give the transition rules from which transitions of the form $P \stackrel{\alpha}{\to} P'$ can be inferred, where α is of the form a, \overline{a} or τ . The rules should not use structural congruence (\equiv). [5 marks]

Enumerate the ways in which a transition of the form $P|Q \xrightarrow{\alpha} R$ can be inferred from transitions of P and/or Q, and indicate the form of R in each case. [5 marks]

Hence show that if $P|Q \xrightarrow{\alpha} R_1$, then there exists R_2 such that $Q|P \xrightarrow{\alpha} R_2$ and $R_1 \equiv R_2$. [5 marks]

Give an example of P and Q for which $\operatorname{new} a(P|Q)$ has a τ -transition but $P|\operatorname{new} a Q$ has no τ -transition. Now suppose that $\operatorname{new} a(P|Q) \xrightarrow{\alpha} R_1$; what syntactic condition on P ensures that $P|\operatorname{new} a Q \xrightarrow{\alpha} R_2$ for some R_2 with $R_1 \equiv R_2$? Justify your answer. [5 marks]