
1999 Paper 5 Question 9

Semantics of Programming Languages

The commands C of a language for manipulating integer storage locations ` are
given by

C ::= skip | ` := E | C ; C | if B then C else C

| while B do C | begin loc ` := E ; C end

where B and E range over boolean and integer expressions respectively, whose
precise syntax you do not need to specify, but which include various integer and
boolean operations and an operation for reading the contents of a location. The
last form of command is for block-structured local state.

You may assume that evaluation of integer expressions E to integer values n has no
side-effects on states s and that a suitable evaluation relation of the form E, s⇓n has
already been defined; similarly an evaluation relation B, s⇓b for boolean expressions
has already been defined. Using these relations, give an operational semantics for
commands in the form of an inductively defined relation C, s ⇓ s′ for evaluating a
command C in a state s, resulting in a final state s′. Make sure that your definition
treats properly the local scope of ` in a block begin loc ` := E ; C end. Illustrate
this by showing that evaluating ` := 0 ; (begin loc ` := 1 ; skip end) in any state
results in a state in which the value stored in ` is 0, not 1. [12 marks]

Use the operational semantics to give a definition of semantic equivalence for these
commands. Prove that if ` 6= `′ then begin loc ` := E ; `′ := !` end and `′ := E
are semantically equivalent for any integer expression E. What happens if ` = `′?
If C does not involve any occurrences of `, is begin loc ` := E ; C end always
semantically equivalent to C? [8 marks]

1


