1999 Paper 4 Question 1

Computation Theory

Define the primitive recursive and partial ($\mu-)$ recursive functions.
Suppose you are given a Turing machine with state set Q and k-symbol alphabet S whose action is defined by transition functions

$$
\begin{array}{rlr}
q^{\prime} & =f(q, s) \in Q \uplus\{H\} & \text { (disjoint union) } \\
s^{\prime} & =r(q, s) \in S & \text { (replacement symbol) } \\
d^{\prime} & =d(q, s) \in\{L, R, C\} & \text { (movement) }
\end{array}
$$

where the head moves to L or R on the tape unless $q^{\prime}=H$, in which case $d^{\prime}=C$ and the machine stops.

Extend the action of the machine by an additional state symbol D so that for all $s \in S$,

$$
\begin{aligned}
f(H, s) & =f(D, s)=D \\
r(H, s) & =r(D, s)=s \\
d(H, s) & =d(D, s)=C
\end{aligned}
$$

Show that the action of the Turing machine as extended in this way can be described by a primitive recursive function $T(t, x)$, where t is a step counter and x is a code specifying the initial configuration.

Hence show that computation by any Turing machine may be represented by a partial recursive function.

