1999 Paper 2 Question 7

Regular Languages and Finite Automata

Suppose that L is a language over the alphabet $\{0,1\}$. Let L^{\prime} consist of all strings u^{\prime} over $\{0,1\}$ with the property that there is some string $u \in L$ with the same length as u^{\prime} and differing from u^{\prime} in at most one position in the string. Show that if L is regular, then so is L^{\prime}. [Hint: if Q is the set of states of some finite automaton accepting L, construct a non-deterministic automaton accepting L^{\prime} with states $Q \times\{0,1\}$, where the second component counts how many differences have been seen so far.]
[10 marks]

If a deterministic finite automaton M accepts any string at all, it accepts one whose length is less than the number of states in M. Explain why.

State Kleene's theorem about regular expressions and deterministic finite automata.
[2 marks]
Describe how to decide for any given regular expression whether or not there is a string that matches it.

