1999 Paper 2 Question 3

Digital Electronics

In an edge triggered flip flop, explain what is meant by
(a) hold time
(b) setup time
(c) delay from clock edge to output

What relation should hold between two of these quantities to provide sensible behaviour and why?

Comment on the possibility and desirability of negative hold times.
Each of the following boolean functions is a function of the four variables w, x, y, z. The functions are not totally specified and may take on any value for certain inputs. f_{n} indicates where the function must be true, while g_{n} is true where the value of the function is not constrained. Draw maps and provide a minimum sum of products form for each of the functions.
(a) $f_{1}=\bar{w} \bar{x} \bar{y} z+\bar{w} x \bar{y} z+\bar{w} x y \bar{z}+w x \bar{y} \bar{z}+w x \bar{y} z+w x y \bar{z}$ $g_{1}=\bar{w} \bar{x} y \bar{z}+\bar{w} x \bar{y} \bar{z}$
(b) $f_{2}=\bar{w} \bar{x} \bar{y} \bar{z}+\bar{w} \bar{x} \bar{y} z+\bar{w} x \bar{y} \bar{z}+\bar{w} x \bar{y} z+\bar{w} x y \bar{z}+\bar{w} x y z+w \bar{x} \bar{y} z+w \bar{x} y z+w x y z$ $g_{2}=w \bar{x} y \bar{z}+w x y \bar{z}$

Let $f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ be equal to 1 if and only if exactly k of the variables have the value 1 . How many prime implicants does this function have?

