1999 Paper 1 Question 7

Discrete Mathematics

Define Euler's totient function $\phi(n)$.
Prove the Fermat-Euler Theorem that $a^{\phi(n)} \equiv 1(\bmod n)$ for appropriate a. [8 marks]

Deduce a theorem of Fermat about $a^{p-1}-1$ for a prime number p. [2 marks]
Given a prime, p, with $p \neq 2$ and $p \neq 5$, show that there are infinitely many natural numbers, each of which has 9 s as all its digits and which is divisible by p. [8 marks]

