1999 Paper 1 Question 2

Discrete Mathematics

Let $M_{n}=2^{n}-1$ be the $n^{\text {th }}$ Mersenne number.
Show that M_{n} can be prime only if n is.
Let $\Delta_{m}=m(m+1) / 2$ be the $m^{\text {th }}$ triangular number and recall that a perfect number is one equal to the sum of its factors (including 1 but excluding the number itself).

Suppose that $p=M_{n}$ is prime. Show that Δ_{p} is a perfect number.

