1999 Paper 13 Question 13

Numerical Analysis II

With reference to solution of the differential equation y' = f(x, y), explain the conventional notation $x_n, y(x_n), y_n$, and f_n . [3 marks]

Explain the terms *local error*, *global error*, and *order* of a method. [3 marks]

Milne's method uses the *multistep* formulae

$$y_{n+1} = y_{n-3} + \frac{4h}{3}(2f_n - f_{n-1} + 2f_{n-2})$$
$$y_{n+1} = y_{n-1} + \frac{h}{3}(\tilde{f}_{n+1} + 4f_n + f_{n-1})$$

which each have local error $O(h^5)$. Outline the general technique for deriving multistep formulae. What is the meaning of the term \tilde{f}_{n+1} ? Suggest a suitable starting procedure and explain how the Milne formulae are used. [8 marks]

Let $y(x_0) = 0, h = 0.3$ and f(x, y) = 3y/x - 2. Suppose the following values of f_n have been generated by the starting procedure: 1.3, 2.1, 3.4 for n = 1, 2, 3. Calculate the first required value of \tilde{f}_{n+1} . [3 marks]

Contrast Milne's method with a comparable *one step* method, commenting particularly on *stability*, *efficiency* and *step size* considerations. [3 marks]