1999 Paper 13 Question 10

Introduction to Functional Programming

Define the higher order function foldl ("fold left") such that

```
    foldl (op+) (0,[1,2,3]) evaluates to 6, and
foldl (op^) ("doh",["ray","me"]) evaluates to "dohrayme"
```

(Recall that ${ }^{\text {- }}$ is a function to concatenate two strings.)
Define the higher order function foldr ("fold right") such that

```
foldr (op+) (0,[1,2,3]) evaluates to 6, and
foldr (op^) ("doh",["ray","me"]) evaluates to "raymedoh"
```

Use either foldl or foldr to write the following functions.
(a) The function append, such that the expression

$$
\text { append }([1,2],[3,4])
$$

evaluates to $[1,2,3,4]$.
(b) The function length, such that the expression

$$
\text { length }([1,6,9,15])
$$

evaluates to 4.
(c) The function map, such that the expression

```
map (fn x => x+1) [1,2,3]
```

evaluates to $[2,3,4]$.

In some cases, foldl and foldr can be interchanged, i.e. the theorem

```
foldl f (e,xs) = foldr f (e,xs)
```

holds. Assuming that the list xs is finite, give two conditions concerning f and e that are sufficient for this theorem to be true. [Hint: you may find it helpful to consider the expansion of the expressions foldl (op+) ($0,[1,2,3]$) and foldr (op+) (0, [1,2,3]).]

