1999 Paper 11 Question 8

Mathematics for Computation Theory

Let S be a finite alphabet. Define
(a) the set of events E over S
(b) acceptance of an event E by a deterministic finite automaton (DFA) M
(c) the regular operators on events
(d) the set of regular events over S

State Kleene's Theorem.
Suppose that the event E is accepted by an N-state DFA $M \equiv(Q, S, \iota, f, A)$. Show that if E is non-empty, then M must accept some word w such that $\ell(w)<N$.
[5 marks]
Let regular events E, E^{\prime} over the same alphabet S be accepted by DFA M, M^{\prime} respectively. Show that it is decidable whether $E=E^{\prime}$.
[4 marks]
[If you use the Pumping Lemma it should be clearly stated.]

