1999 Paper 10 Question 13

Continuous Mathematics

Many important problems in mathematical modelling and scientific computing require the use of complex variables. Unfortunately, popular programming languages like C do not have a complex variable type, and so we must construct them from floating-point types. Assuming that the quantities a, b, c, d are all real numbers and $i=\sqrt{-1}$, resolve the following expressions, or explain the following operations, involving complex variables $\mathcal{Z}_{1}=a+i b$ and $\mathcal{Z}_{2}=c+i d$:
(a) Let $\mathcal{Z}_{3}=\mathcal{Z}_{1} \mathcal{Z}_{2}$. What is the real part of \mathcal{Z}_{3}, and what is its imaginary part? [2 marks]
(b) What is $\left\|\mathcal{Z}_{1}\right\|$, the modulus of \mathcal{Z}_{1}, and what is $\left\|\mathcal{Z}_{3}\right\|$, the modulus of $\mathcal{Z}_{3}=\mathcal{Z}_{1} \mathcal{Z}_{2}$?
(c) What is $\angle \mathcal{Z}_{2}$, the angle of complex variable \mathcal{Z}_{2} ?
[2 marks]
(d) Express \mathcal{Z}_{1} in complex polar form, not using the quantities a or b but rather the modulus $\left\|\mathcal{Z}_{1}\right\|$ and angle $\angle \mathcal{Z}_{1}$.
[2 marks]
(e) Suppose that \mathcal{Z}_{1} and \mathcal{Z}_{2} both have a modulus of 1. Explain, with the aid of a diagram, how their product $\mathcal{Z}_{3}=\mathcal{Z}_{1} \mathcal{Z}_{2}$ amounts to a rotation in the complex plane. Why is the multiplication of these complex variables reduced now to addition? Without using the quantities a, b, c, d, what is the value of $\left\|\mathcal{Z}_{3}\right\|$?
[4 marks]
(f) Suppose that in complex polar form, $\mathcal{Z}=\exp (2 \pi i / 5)$. What do you get if \mathcal{Z} is multiplied by itself 5 times? Give the simplest possible answer that you can.
[2 marks]
(g) Consider the complex exponential function $f(x)=\exp (2 \pi i \omega x)$. What function is its real part? What function is its imaginary part?
[2 marks]
(h) If the above function $f(x)$ passes through a linear system, i.e. is operated upon by any conceivable linear differential or integral operator, what is the most dramatic way in which $f(x)$ can possibly be affected?
[4 marks]

