1999 Paper 10 Question 10

Mathematics for Computation Theory

Let A, B be sets. Define:
(a) the Cartesian product $(A \times B)$
(b) the set of relations R between A and B
(c) the identity relation Δ_{A} on the set A

Suppose S, T are relations between A and B, and between B and C, respectively. Define the inverse relation S^{-1} and the product relation $S \circ T$. Prove that $(S \circ T)^{-1}=T^{-1} \circ S^{-1}$.

Let f be a relation between A and B, and R be a relation on A. Characterise the following conditions in terms of the algebra of relations:
(a) f is a partial function
(b) R is reflexive
(c) R is symmetric
(d) R is transitive

If condition (a) holds, let $Q=f \circ f^{-1}$. Which of conditions ($b-d$) must Q satisfy? In what circumstances is Q an equivalence relation?
[8 marks]

