1998 Paper 8 Question 14

Numerical Analysis II

Let n_+ be the number of positive real roots of a polynomial $p_n(x)$. Let c be the number of changes of sign when the coefficients are taken in order. State *Descartes'* rule of signs. [2 marks]

 $\mathbf{I}\mathbf{f}$

$$p_3(x) = x^3 - 8x^2 + 11x + 20$$

what does this rule say about the polynomials $p_3(x)$, $p_3(-x)$? [2 marks]

Newton's method for solution of a system of n non-linear equations $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ can be expressed in the form

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{h}_{k+1}.$$

What is the formula for \mathbf{h}_{k+1} ?

Outline the *damped Newton method* in n variables. [4 marks]

Apply the damped Newton method in one variable to find one root of the polynomial $p_3(x)$, using $x_0 = 1$ as the starting value. Hence factorise $p_3(x)$ and draw a rough sketch of the polynomial, showing the first Newton step as a tangent. [10 marks]

[2 marks]