
1998 Paper 5 Question 12

Semantics of Programming Languages

An abstract machine for evaluating closed terms of the untyped lambda calculus
has configurations which are non-empty lists of closed terms. Its transitions are of
two forms:

(M1M2) :: L→M1 :: M2 :: L(
−→
app)

λx (M1) :: M2 :: L→M1[M2/x] :: L(−→abs)

where :: denotes list concatenation and M1[M2/x] denotes the result of substituting

M2 for all free occurrences of the variable x in M1. Let ⇓ be the binary relation
between closed terms inductively defined by the following axioms and rules:

λx (M) ⇓ λx (M)(⇓abs)

M1 ⇓ λx (M2) M2[M3/x] ⇓ λx (M4)

M1M3 ⇓ λx (M4)
.(⇓app)

(a) Prove by Rule Induction that if M1 ⇓ λx (M2) holds, then so does
M1 :: L→∗ λxM2 :: L, where →∗ denotes the reflexive-transitive closure of
the transition relation →. [5 marks]

(b) Prove by Mathematical Induction on n that if
(. . . ((M [M0/x]M1)M2) . . .)Mn ⇓ λx (M ′), then
(. . . ((((λx (M))M0)M1)M2) . . .)Mn ⇓ λx (M ′). [5 marks]

(c) Given a configuration M :: L, let M@L denote the closed term defined by
induction on the length of the list L by:

M@nil
def
= M and M@(M ′ :: L)

def
= (MM ′)@L. Using (b), show by case

analysis for → that if M1 :: L1 → M2 :: L2 and M2@L2 ⇓ λx (M ′) hold, then
so does M1@L1 ⇓ λx (M ′). [5 marks]

(d) Deduce from (a) and (c) that M1 ⇓ λx (M2) holds if and only if
M1 :: nil →∗ λx (M2) :: nil does. [5 marks]

1


