Numerical Analysis II

Explain what is meant by local error and global error in methods for the solution of ordinary differential equations (ODEs). If a typical method has local error $O(h^3)$, what would you expect the global error to be? [3 marks]

Euler's method for solution of y' = f(x, y) can be expressed as $y_{n+1} = y_n + k_1$. From the Taylor series, find an expression for k_1 . [2 marks]

The Runge–Kutta method RK2 is

$$y_{n+1} = y_n + \frac{1}{2}(k_1 + k_2)$$

where k_1 is the increment used by Euler's method, and

$$k_2 = h f(x_n + h, y_n + k_1).$$

In terms of Euler's method, what does the quantity k_2 represent?

[2 marks]

Assume that RK2 is carried out with step sizes h and h/2, and that

$$y_{(h)}(x_{n+1}) = y(x_{n+1}) + C_n h^2 + O(h^3).$$

Derive an estimate of the error $E_n = |C_n|(h/2)^2$ in $y_{(h/2)}(x_{n+1})$. [3 marks]

Let ε be the target error per unit step. Why, in step-size control for RK2, is $\varepsilon' = \varepsilon/8$ taken as the target error corresponding to half the step size? [2 marks]

A certain ODE is to be solved using RK2 with step-size control. Using computed values for y from the table below, taking $\varepsilon = 0.005$, and starting with h = 0.1, state at which values of x you would make the *first* and *second* changes of step size, and what new values of h you would use in each case.

		h			
		0.025	0.05	0.1	0.2
	0.05	0.10038	0.10050		
	0.1	0.20279	0.20304	0.20400	
	0.15	0.30946	0.30981		
	0.2	0.42295	0.42341	0.42516	0.43200
x	0.25	0.54649	0.54702		
	0.3	0.68434	0.68490	0.68697	
	0.35	0.84247	0.84295		
	0.4	1.02971	1.02989	1.03047	1.03373
	0.45	1.25995	1.25930		
	0.5	1.55646	1.55379	1.54484	

[8 marks]