
1998 Paper 13 Question 10

Introduction to Functional Programming

The following datatypes are meant to be used to represent programs written in a
simple imperative language:

datatype expression = Expr of (string -> int) -> int;

datatype command = Assign of (string * expression)

| Sequence of (command * command)

| While_do of (expression * command);

The state, namely the values of the variables at a given point, is represented by a
function that takes the variable name and gives the corresponding value. Variables
and expressions only involve integers and, when treated as booleans, zero is regarded
as false and non-zero values as true. For example, the compound command:

x := 1;

while n <> 0 do

{ x := x * n;

n := n - 1 }

can be written

Sequence(Assign("x",Expr(fn s => 1)),

While_do(Expr(fn s => s"n"),

Sequence(Assign("x",Expr(fn s => s"x" * s"n")),

Assign("n",Expr(fn s => s"n" - 1)))));

A command can be interpreted as a mapping from the initial state to the final state;
this will be achieved by the function interpret below.

First write an ML function update whose type is

(string -> int) * string * int -> (string -> int)

such that update(s,x,i) gives a new state representing state s but with the
variable x being assigned the value i. [5 marks]

Now, using update or otherwise, write an ML function interpret whose type is

command -> (string -> int) -> (string -> int)

which takes a command c and an initial state s1, and returns the corresponding
final state s2 that results from executing c in state s1. For example, if the above
compound command is bound to fp, then

interpret fp (fn "n" => 6) "x";

should yield 720. [15 marks]

1


