1998 Paper 12 Question 13

Numerical Analysis II

Let n_{+}be the number of positive real roots of a polynomial $p_{n}(x)$. Let c be the number of changes of sign when the coefficients are taken in order. State Descartes' rule of signs.

If

$$
p_{3}(x)=x^{3}-8 x^{2}+11 x+20
$$

what does this rule say about the polynomials $p_{3}(x), p_{3}(-x)$?
Newton's method for solution of a system of n non-linear equations $\mathbf{f}(\mathbf{x})=\mathbf{0}$ can be expressed in the form

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\mathbf{h}_{k+1} .
$$

What is the formula for \mathbf{h}_{k+1} ?
Outline the damped Newton method in n variables.
Apply the damped Newton method in one variable to find one root of the polynomial $p_{3}(x)$, using $x_{0}=1$ as the starting value. Hence factorise $p_{3}(x)$ and draw a rough sketch of the polynomial, showing the first Newton step as a tangent. [10 marks]

