## 1998 Paper 11 Question 8

## Mathematics for Computation Theory

Let $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ be an $(m+n) \times(m+n)$ event matrix partitioned so that $A, D$ are square $(m \times m),(n \times n)$ matrices respectively. Let

$$
\begin{array}{ll}
E=\left(A+B D^{*} C\right)^{*} & F=A^{*} B\left(D+C A^{*} B\right)^{*} \\
G=D^{*} C\left(A+B D^{*} C\right)^{*} & H=\left(D+C A^{*} B\right)^{*} .
\end{array}
$$

Show that $X=\left(\begin{array}{cc}E & F \\ G & H\end{array}\right)$ satisfies the event matrix equation $X=I+M X$, where $I$ is the identity $(m+n) \times(m+n)$ matrix.

Consider the following deterministic finite automaton:


Here $\alpha$ is the initial state, and the sole accepting state. Show that the event recognised by the automaton may be described by the regular expression

$$
\left\{a(a b)^{*} b+a^{2}(b a)^{*} a+b^{2}(a b)^{*} b+b(b a)^{*} a\right\}^{*}
$$

Explain how each of the summands in the brackets arises.
[You may assume that if $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ is an event transition matrix partitioned so that $A$ and $D$ are square, then $M^{*}=\left(\begin{array}{cc}E & F \\ G & H\end{array}\right)$ takes the form stated above.]

