1998 Paper 10 Question 4

Continuous Mathematics

Show that for all families of functions which are "self-Fourier" (i.e. equivalent in functional form to their own Fourier transforms), closure of a family under multiplication entails also their closure under convolution, and vice versa.
[Hint: closure of a set of functions under an operation means that applying that operation to any member of the set creates a function which is also a member of the set.]

A periodic square wave, which alternates between the constants $+\pi / 4$ and $-\pi / 4$ with period 2π has the following Fourier series, using all positive odd integers n :

$$
f(x)=\sum_{\text {odd } n=1}^{\infty} \frac{1}{n} \sin (n x)
$$

Derive from this the Fourier series for a periodic triangular wave, which ramps up and down with slopes $+\pi / 4$ and $-\pi / 4$ and with period 2π.

Any real-valued function $f(x)$ can be represented as the sum of one function $f_{e}(x)$ that has even symmetry (it is unchanged after a right-left flip around $x=0$) so that $f_{e}(x)=f_{e}(-x)$, plus one function $f_{o}(x)$ that has odd symmetry, so that $f_{o}(x)=-f_{o}(-x)$. Such a decomposition of any function $f(x)$ into $f_{e}(x)+f_{o}(x)$ is illustrated by

$$
\begin{aligned}
& f_{e}(x)=\frac{1}{2} f(x)+\frac{1}{2} f(-x) \\
& f_{o}(x)=\frac{1}{2} f(x)-\frac{1}{2} f(-x)
\end{aligned}
$$

Use this type of decomposition to explain why the Fourier transform of any realvalued function has Hermitian symmetry: its real-part has even symmetry, and its imaginary-part has odd symmetry. Comment on how this redundancy can be exploited to simplify computation of Fourier transforms of real-valued, as opposed to complex-valued, data.

