1998 Paper 10 Question 12

Numerical Analysis I

Define relative error, machine epsilon (macheps).
Consider IEEE single-precision arithmetic. How are the 32 bits arranged in terms of sign, exponent and significand? How is the exponent stored? Explain the terms normalized number, denormal number. What is the hidden bit and how is it used? How are negative numbers stored? What does $N a N$ stand for? Give an example of an operation that yields a $N a N$ value.

Given that $e_{\max }=127$, show the bit pattern representing each of the following numbers. [Draw lines to separate the sign, exponent and significand. You may use " $0 \ldots 0$ " to represent long strings of zeros.]

$$
\begin{aligned}
& 0 \\
& -\infty \\
& -1.0 \\
& 1.0+\text { macheps } \\
& 4.0 \\
& 4.0+\text { macheps } \\
& 1.125 \times 2^{-31} \\
& \text { a } N a N \text { value [give one example] } \\
& \hat{x}, \text { the smallest representable number greater than } 2^{16}
\end{aligned}
$$

In the last case, what is
(a) the value of the least significant bit in the significand of \hat{x}, and
(b) the relative error if rounding error causes 2^{16} to be stored as \hat{x} ?

