Mathematics for Computation Theory

Let $S=\{a, b\}$ be an alphabet of two characters, totally ordered by specifying that $a<b$. Let $\Sigma=S^{*}$ be the set of all strings over S, and $\Sigma_{n}=\{w \in \Sigma \mid \ell(w)=n\}$ be the subset consisting of strings of length n. For $w \in \Sigma$ with length at least n, write w_{n} for its initial substring of length n.

For $n \geqslant 1$ define inductively the lexicographic order \sqsubseteq_{n} on $S^{(n+1)} \equiv S^{(n)} \times S$, showing that the order in each $S^{(n)}$ is total.

Defining, as usual, for s and t in $S^{(n)}$

$$
s \sqsubseteq_{n} t \text { iff } s \sqsubseteq_{n} t \text { and } s \neq t
$$

the lexicographic order \sqsubseteq on Σ (often known as the dictionary order on strings) can be defined as follows:

$$
\begin{gathered}
u \sqsubseteq v \text { iff } \quad u_{n} \sqsubset_{n} v_{n} \quad\left(\text { regarding } u_{n} \text { and } v_{n} \text { as elements of } S^{(n)}\right) \\
\text { or }\left(u_{n}=v_{n} \text { and } \ell(u) \leqslant \ell(v)\right)
\end{gathered}
$$

where n is the shorter of the lengths of u and v. With this definition (Σ, \sqsubseteq) is a totally ordered set.

Consider the following subsets of Σ :

$$
\begin{aligned}
& A=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\} \\
& B=\left\{b^{m} a^{n} \mid m, n \in \mathbb{N}\right\}
\end{aligned}
$$

For each of A, B state, giving reasons, whether it is
(a) a regular language over S
(b) a set well-ordered by \sqsubseteq

