1998 Paper 10 Question 10

Mathematics for Computation Theory

Let $S = \{a, b\}$ be an alphabet of two characters, totally ordered by specifying that a < b. Let $\Sigma = S^*$ be the set of all strings over S, and $\Sigma_n = \{w \in \Sigma \mid \ell(w) = n\}$ be the subset consisting of strings of length n. For $w \in \Sigma$ with length at least n, write w_n for its initial substring of length n.

For $n \ge 1$ define inductively the *lexicographic order* \sqsubseteq_n on $S^{(n+1)} \equiv S^{(n)} \times S$, showing that the order in each $S^{(n)}$ is *total*. [8 marks]

Defining, as usual, for s and t in $S^{(n)}$

$$s \sqsubset_n t$$
 iff $s \sqsubseteq_n t$ and $s \neq t$

the *lexicographic order* \sqsubseteq on Σ (often known as the *dictionary order on strings*) can be defined as follows:

 $u \sqsubseteq v$ iff $u_n \sqsubset_n v_n$ (regarding u_n and v_n as elements of $S^{(n)}$) or $(u_n = v_n \text{ and } \ell(u) \leq \ell(v))$

where n is the shorter of the lengths of u and v. With this definition (Σ, \sqsubseteq) is a totally ordered set.

Consider the following subsets of Σ :

$$A = \{a^n b^n \mid n \in \mathbb{N}\}$$
$$B = \{b^m a^n \mid m, n \in \mathbb{N}\}$$

For each of A, B state, giving reasons, whether it is

- (a) a regular language over S
- (b) a set well-ordered by \sqsubseteq

[12 marks]